/**

Module
BallRequestSM.c

Revision
2.0.1

Description
This is a template file for implementing state machines.

Notes

History

When Who What/Why

02/07/13 21:00 jec corrections to return variable (should have been
ReturnEvent, not CurrentEvent) and several EV_ xxx
event names that were left over from the old version

02/08/12 09:56 jec revisions for the Events and Services Framework Gen2

02/13/10 14:29 jec revised Start and run to add new kind of entry

function

to make implementing history entry cleaner
02/13/10 12:29 jec added NewEvent local variable to During function and
comments about using either it or Event as the

return
02/11/10 15:54 jec more revised comments, removing last comment in
during
function that belongs in the run function
02/09/10 17:21 jec updated comments about internal transitions on
During funtion
02/18/09 10:14 jec removed redundant call to RunLowerlevelSM in
EV _Entry
processing in During function
02/20/07 21:37 jec converted to use enumerated type for events & states
02/13/05 19:38 jec added support for self-transitions, reworked
to eliminate repeated transition code
02/11/05 16:54 jec converted to implment hierarchy explicitly
02/25/03 10:32 jec converted to take a passed event parameter
02/18/99 10:19 jec built template from MasterMachine.c
02/14/99 10:34 jec Began Coding
**/
[Include Files ——=——————=———————— - ——— */

// Basic includes for a program using the Events and Services Framework
#include "ES Configure.h"
#include "ES Framework.h"

/* include header files for this state machine as well as any machines at the
next lower level in the hierarchy that are sub-machines to this machine

*/

#include "BallRequestSM.h"

[m e e Module Defines ----------—————————————————— */
// define constants for the states for this machine
// and any other local defines

/* prototypes for private functions for this machine, things like during
functions, entry & exit functions.They should be functions relevant to the
behavior of this state machine

*/

static ES Event DuringPulsing(ES Event Event);

static ES Event DuringNot Pulsing(ES Event Event);

static ES Event DuringFull of Ammo(ES Event Event);

[mm e Module Variables —--——--—--—-———————————————— */
// everybody needs a state variable, you may need others as well
static TemplateState t CurrentState;

static unsigned char ball index = 1;
static unsigned char request ball flag = 0;
static unsigned char last pulse = 0;

[Fmm - Module Code --——————=————————————————————— */
/**
Function

RunBallRequestSM
Parameters

ES Event: the event to process

Returns
ES Event: an event to return

Description
add your description here
Notes
uses nested switch/case to implement the machine.
Author
J. Edward Carryer, 2/11/05, 10:45AM
*k****************/
ES Event RunBallRequestSM(ES Event CurrentEvent)
{
unsigned char MakeTransition = false;/* are we making a state transition?
*/
TemplateState t NextState = CurrentState;
ES Event EntryEventKind = { ES ENTRY, 0 };// default to normal entry to
new state
ES Event ReturnEvent = CurrentEvent; // assume we are not consuming event

#ifdef PRINT BALL REQUEST SM CALLS
if (CurrentEvent.EventType != ES TIMEOUT) //don't spam terminal windows
if this is a routine update/polling event

{
printf ("RunBallRequestSM\n\r") ;

#endif

switch (CurrentState)

{
case Pulsing : // If current state is state one
{ // Execute During function for state one. ES ENTRY & ES EXIT are
// processed here allow the lowere level state machines to re-map

// or consume the event
CurrentEvent = DuringPulsing(CurrentEvent);
//process any events

#ifdef PRINT BALL REQUEST SM STATES
if (CurrentEvent.EventType != ES TIMEOUT) //don't spam terminal
windows if this is a routine update/polling event
{
printf ("Pulsing\n\r");
}

#endif

if (CurrentEvent.EventType != ES NO EVENT) //If an event is active
{ switch (CurrentEvent.EventType)
{ case ES ENTRY
{ if (Querry Ammo() < 5) //if not fully
loaded

request ball flag = 1; //signal
ISR to start IR pulse sequence

else

NextState = Full of Ammo;

MakeTransition = true; //mark
that we are taking a transition

// if transitioning to a state
with history change kind of entry

//EntryEventKind.EventType =
ES ENTRY HISTORY;

EntryEventKind.EventType =
ES ENTRY;

// optionally, consume or re-map
this event for the upper

// level state machine

ReturnEvent.EventType =
ES _NO EVENT;

}

break;

case Request Sent:

{
if (Querry Ammo () < 5)
{
NextState = Not Pulsing;

else

NextState = Full of Ammo;
}

MakeTransition = true; //mark that we are
taking a transition
// if transitioning to a state with history change kind of

entry
//EntryEventKind.EventType = ES ENTRY HISTORY;
EntryEventKind.EventType = ES ENTRY;
// optionally, consume or re-map this event for the upper
// level state machine
ReturnEvent.EventType = ES NO EVENT;
}
break;
case ES_EXIT
{
}
break;
default : //If event is event one
{ // Execute action function for state one : event one
//NextState = Out of Balls;//Decide what the next state
will be
// for internal transitions, skip changing MakeTransition
//MakeTransition = false; //mark that we are taking a
transition
// 1f transitioning to a state with history change kind of
entry

//EntryEventKind.EventType = ES ENTRY HISTORY;
//EntryEventKind.EventType = ES ENTRY;
// optionally, consume or re-map this event for the upper
// level state machine
//ReturnEvent = CurrentEvent;
}
break;
// repeat cases as required for relevant events

}
}

break;
// repeat state pattern as required for other states

case Not Pulsing : // If current state is state one

{ // Execute During function for state one. ES ENTRY & ES EXIT are
// processed here allow the lowere level state machines to re-map
// or consume the event
CurrentEvent = DuringNot Pulsing(CurrentEvent);
//process any events

#ifdef PRINT BALL REQUEST SM STATES
if (CurrentEvent.EventType != ES TIMEOUT) //don't spam terminal
windows i1if this is a routine update/polling event

{

switches

printf ("Not Pulsing\n\zr");

#endif

if (CurrentEvent.EventType != ES NO EVENT) //If an event is active
{

switch (CurrentEvent.EventType)

{

case ES _ENTRY:

{
//Start Timer
//Set timer for next read of calibration

ES Timer SetTimer (BALL REQUEST TIMER,

BALL REQUEST INTERVAL MS) ;

ES Timer StartTimer (BALL REQUEST TIMER) ;
}

case ES TIMEOUT : //If event is event one
{ // Execute action function for state one : event one

if (CurrentEvent.EventParam ==

BALL REQUEST TIMER)

NextState = Pulsing;

MakeTransition = true; //mark

that we are taking a transition

// 1f transitioning to a state

with history change kind of entry

//EntryEventKind.EventType =

ES_ENTRY HISTORY;

ES_ENTRY;

EntryEventKind.EventType =

// optionally, consume or re-map

this event for the upper

// level state machine
ReturnEvent.EventType =

ES_NO EVENT;

}
break;
// repeat cases as required for relevant events

default : //If event is event one
{ // Execute action function for state one : event one
//NextState = Loaded;//Decide what the next state will be
// for internal transitions, skip changing MakeTransition
//MakeTransition = false; //mark that we are taking a

transition

entry

}

//

break;

// if transitioning to a state with history change kind of

//EntryEventKind.EventType = ES ENTRY HISTORY;
//EntryEventKind.EventType = ES ENTRY;

// optionally, consume or re-map this event for the upper

// level state machine

//ReturnEvent = CurrentEvent;
}
break;
repeat cases as required for relevant events

case Full of Ammo: // If current state is state one
{// Execute During function for state one. ES ENTRY & ES EXIT are
// processed here allow the lowere level state machines to re-map
// or consume the event

CurrentEvent = DuringFull of Ammo (CurrentEvent);

#ifdef PRINT BALL_ REQUEST SM STATES
if (CurrentEvent.EventType != ES TIMEOUT) //don't spam terminal
windows if this is a routine update/polling event

{

}

#endif

printf ("Full of Ammo\n\r");

//process any events

if

{

transition

entry

}

(Curr

switch

{

//

//break;

entEvent.EventType != ES NO EVENT) //If an event is active

(CurrentEvent.EventType)

default : //If event is event one

//NextState = Firing;//Decide what the next state will be
// for internal transitions, skip changing MakeTransition
//MakeTransition = false; //mark that we are taking a

// if transitioning to a state with history change kind of

//EntryEventKind.EventType = ES ENTRY HISTORY;
//EntryEventKind.EventType = ES ENTRY;

// optionally, consume or re-map this event for the upper

// level state machine

//ReturnEvent = CurrentEvent;
}
break;
repeat cases as required for relevant events

}

break;

// If we are making a state transition
if (MakeTransition == true)
{
// Execute exit function for current state

CurrentEvent.EventType = ES EXIT;
RunBallRequestSM (CurrentEvent) ;

CurrentState = NextState; //Modify state variable

// Execute entry function for new state
// this defaults to ES_ENTRY
RunBallRequestSM(EntryEventKind) ;

CurrentState = NextState;

return (ReturnEvent) ;

/**

Function
StartBallRequestSM

Parameters
None

Returns
None

Description
Does any required initialization for this state machine

Notes

Author
J. Edward Carryer, 2/18/99, 10:38AM

**/
void StartBallRequestSM (ES Event CurrentEvent)

{
// local variable to get debugger to display the value of CurrentEvent

ES Event LocalEvent = CurrentEvent;

#ifdef PRINT_BALL_REQUEST_SM_CALLS
if (CurrentEvent.EventType != ES TIMEOUT) //don't spam terminal windows if

this is a routine update/polling event

{
printf ("StartBallRequestSM\n\r");

#endif

// to implement entry to a history state or directly to a substate

// you can modify the initialization of the CurrentState variable
// otherwise just start in the entry state every time the state machine
// 1is started
if (ES_ENTRY HISTORY != CurrentEvent.EventType)
{
if (Querry Ammo () < 5)
{

CurrentState = Pulsing;

CurrentState Full of Ammo;

//Configure ports T4-5 as outputs
DDRT |= BIT4HI|BITS5HI;

//Initialize with ports T4-T5 low
PTT &= BIT4LO&BITS5LO;

//Turn visual indicator light on before starting pulse sequence
PTT |= BITOLHI;

//Configure Timer 1, Channel 4 as an output compare for timing IR
communication pulses with ball depot

TIMI_TSCR2 |= (_S12 PR2)|(_S12 PR1)|(_S12 PRO); //scale clock to
divide 24 MHz system clock by 128

TIM1 TIOS |= _S12 I0S4; //configure channel 4 as output compare

TIM1 TCTLl &= (~ S12 OM4)&(~ S12 OL4); //configure channel 4 to leave

pin disconnected
TIM1 TC4 = TIM1 TCNT + LOW PULSE INTERVAL; //initialize output compare

register
TIM1 TFLGl = S12 C4F; //clear interrupt flags
TIM1 TIE |= _S12 C4I; //enable interrupts for channel 4
TIM1 TSCR1 |= S12 TEN; //enable timer

EnableInterrupts; //enable interrupts

// call the entry function (if any) for the ENTRY STATE
RunBallRequestSM (CurrentEvent) ;
}

void StopBallRequestSM (ES Event CurrentEvent)

{
// local variable to get debugger to display the value of CurrentEvent
ES Event LocalEvent = CurrentEvent;

//Turn visual indicator light off after leaving state
PTT &= BITS5LO;

#ifdef PRINT BALL REQUEST SM CALLS

printf ("StopBallRequestSM\n\r") ;
#endif

// call the entry function (if any) for the ENTRY STATE
RunBallRequestSM (CurrentEvent) ;

/**

Function
QueryBallRequestSM

Parameters
None

Returns
TemplateState t The current state of the Template state machine

Description
returns the current state of the Template state machine
Notes

Author
J. Edward Carryer, 2/11/05, 10:38AM

**/

TemplateState t QueryBallRequestSM (void)

{
#ifdef PRINT BALL REQUEST SM CALLS

printf ("QueryBallRequestSM\n\r") ;
#endif

return (CurrentState) ;

/*k************************

private functions
***/

static ES Event DuringPulsing(ES Event Event)
{

ES Event ReturnEvent = Event; // assmes no re-mapping or comsumption

#ifdef PRINT BALL REQUEST SM CALLS
if (Event.EventType != ES TIMEOUT) //don't spam terminal windows if this
is a routine update/polling event
{
printf ("DuringPulsing\n\zr");
}

#endif

// process ES_ENTRY, ES ENTRY HISTORY & ES EXIT events
if ((Event.EventType == ES ENTRY) ||
(Event.EventType == ES_ENTRY_HISTORY))

// implement any entry actions required for this state machine
// after that start any lower level machines that run in this state
//StartLowerLevelSM(Event);

// repeat the StartxxxSM() functions for concurrent state machines
// on the lower level
}
else if (Event.EventType == ES EXIT)
{
// on exit, give the lower levels a chance to clean up first
//RunLowerLevelSM (Event) ;
// repeat for any concurrently running state machines
// now do any local exit functionality
lelse
// do the 'during' function for this state
{
// run any lower level state machine
//ReturnEvent = RunLowerLevelSM (Event) ;
// repeat for any concurrent lower level machines
// do any activity that is repeated as long as we are in this state

}

// return either Event, if you don't want to allow the lower level
machine

// to remap the current event, or ReturnEvent if you do want to allow it.

return (ReturnEvent) ;

}

static ES Event DuringNot Pulsing(ES Event Event)
{

ES Event ReturnEvent = Event; // assmes no re-mapping or comsumption

#ifdef PRINT BALL REQUEST SM CALLS
if (Event.EventType != ES TIMEOUT) //don't spam terminal windows if
this is a routine update/polling event
{
printf ("DuringNot Pulsing\n\r");
}

#endif

// process ES_ENTRY, ES ENTRY HISTORY & ES EXIT events
if ((Event.EventType == ES ENTRY) ||
(Event.EventType == ES ENTRY HISTORY))

// implement any entry actions required for this state machine
// after that start any lower level machines that run in this state
//StartLowerLevelSM(Event);
// repeat the StartxxxSM() functions for concurrent state machines
// on the lower level

}

else if (Event.EventType == ES EXIT)

{
// on exit, give the lower levels a chance to clean up first
//RunLowerLevelSM (Event) ;
// repeat for any concurrently running state machines
// now do any local exit functionality

}else

// do the 'during' function for this state

// run any lower level state machine

//ReturnEvent = RunLowerLevelSM (Event) ;

// repeat for any concurrent lower level machines

// do any activity that is repeated as long as we are in this state

}

// return either Event, if you don't want to allow the lower level
machine

// to remap the current event, or ReturnEvent if you do want to allow it.
return (ReturnkEvent) ;

}

static ES Event DuringFull of Ammo(ES Event Event)
{

ES Event ReturnEvent = Event; // assmes no re-mapping or comsumption
ES Event PostEkvent;

#ifdef PRINT BALL REQUEST SM CALLS
if (Event.EventType != ES TIMEOUT) //don't spam terminal windows 1if
this is a routine update/polling event
{
printf ("DuringFull of Ammo\n\r");
}

#endif

// process ES ENTRY, ES ENTRY HISTORY & ES EXIT events
if ((Event.EventType == ES ENTRY) ||
(Event.EventType == ES ENTRY HISTORY))

PostEvent.EventType = Reload Complete;
PostMasterHSM (PostEvent) ;

// implement any entry actions required for this state machine

// after that start any lower level machines that run in this state
//StartLowerLevelSM(Event);
// repeat the StartxxxSM() functions for concurrent state machines
// on the lower level
}
else if (Event.EventType == ES EXIT)
{
// on exit, give the lower levels a chance to clean up first
//RunLowerLevelSM (Event) ;
// repeat for any concurrently running state machines
// now do any local exit functionality
lelse
// do the 'during' function for this state
{
// run any lower level state machine
//ReturnEvent = RunLowerLevelSM (Event) ;
// repeat for any concurrent lower level machines
// do any activity that is repeated as long as we are in this state

}

// return either Event, if you don't want to allow the lower level
machine

// to remap the current event, or ReturnEvent if you do want to allow it.

return (ReturnEvent) ;

void interrupt Vec timlch4 RequestBall (void)

{ ES Event PostEvent;
TIM1 TFLGl = S12 C4F; //clear interrupt flags
EnablelInterrupts; //enable interrupts
if (request ball flag == 1) //start pulsing if the request

ball flag is set

{
if (last_pulse == 0) //toggle the IR pulse
{
PTT |= BIT4HI; //shine IR light

TIMliTC4 += HIGH PULSE INTERVAL;
//increment timer

last_pulse = 1; //store last pulse

}

else if (ball index < 10)
{
PTT &= BIT4LO; //turn off IR light

TIMl_TC4 += LOW_PULSE_INTERVAL;
//increment timer

ball index ++; //increment pulse
counter

last _pulse = 0; //store last pulse

else
PTT &= BIT4LO; //turn off IR light
TIM1 TC4 += LOW_PULSE INTERVAL;
ball index = 1; //reset ball index

request ball flag = 0; //clear ball
request flag

last _pulse = 0; //store last pulse

PostEvent.EventType = Request Sent;

PostMasterHSM (PostEvent); //Post event
to state machine indicating that ball request transmission is complete

Add Ammo (1) ; //make note of the number
of balls that we've added

